Ultrashort Time-to-Echo Magnetic Resonance Imaging at 3 T for the Detection of Spondylolysis in Cadaveric Spines: Comparison With CT

T 超短时间回波磁共振成像用于检测尸体脊柱的脊椎裂:与 CT 进行比较

阅读:3
作者:Tim Finkenstaedt, Palanan Siriwanarangsun, Suraj Achar, Michael Carl, Sina Finkenstaedt, Nirusha Abeydeera, Christine B Chung, Won C Bae

Conclusions

Our study demonstrated that the detection of pars fractures using a single sagittal UTE MR sequence is superior in performance and confidence to conventional and optimized MR protocols at 3 T, whereas matching those from CT evaluation. Furthermore, we demonstrated the feasibility of in vivo application of the UTE sequence in subjects with and without spondylolysis.

Methods

Four human lumbar spine specimens with 46 individual pars interarticularis were randomly left intact (n = 26) or received experimental osteotomy (n = 20) using a microsurgical saw to simulate spondylolysis. The specimens were imaged using a computed tomography (CT) scan along with 3 "Tiers" of MR protocols at 3 T: Tier 1, conventional lumbar MR protocol; Tier 2, optimized conventional protocol consisting of a sagittal oblique spoiled gradient recall echo and axial oblique T1 and short tau inversion recovery sequences; and Tier 3, a sagittal UTE MR sequence. Two blinded readers evaluated the images using a 4-point scale (1 = spondylolysis certainly absent, 2 = probably absent, 3 = probably present, 4 = certainly present) at each individual pars. For each imaging protocol, diagnostic performance (sensitivity, specificity, and area under the receiver operating characteristic curve, using the surgical osteotomy as the reference) and confidence were assessed and compared using the McNemar test. Furthermore, 2 human subjects were imaged with the conventional and UTE MR protocols to demonstrate feasibility in vivo.

Results

Diagnostic performance was moderate for Tiers 1 and 2, with a moderate sensitivity (0.70 to 0.75) and high (1.00) specificity. In contrast, CT and Tier 3 UTE MR imaging had both high sensitivity (1.00) and specificity (1.00). The sensitivities of CT or Tier 3 were statistically greater than Tier 1 sensitivity (P = 0.041) and neared statistical significance when compared with Tier 2 sensitivity (P = 0.074). Area under the receiver operating characteristic curve was also significantly greater for CT and Tier 3 (each area = 1.00), compared with the areas for Tier 1 (0.89, P = 0.037) or Tier 2 (0.873, P = 0.024). Diagnostic confidences of CT or Tier 3 were much greater than other Tiers: Both Tiers 1 and 2 had a large percentage of uncertain (>60%, P < 0.001) or wrong interpretations (>10%, P < 0.001), unlike CT or Tier 3 (0% uncertain or wrong interpretations). Preliminary in vivo UTE images clearly depicted intact and fractured pars. Conclusions: Our study demonstrated that the detection of pars fractures using a single sagittal UTE MR sequence is superior in performance and confidence to conventional and optimized MR protocols at 3 T, whereas matching those from CT evaluation. Furthermore, we demonstrated the feasibility of in vivo application of the UTE sequence in subjects with and without spondylolysis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。