Maternal Organic Selenium Supplementation Relieves Intestinal Endoplasmic Reticulum Stress in Piglets by Enhancing the Expression of Glutathione Peroxidase 4 and Selenoprotein S

母体补充有机硒可增强谷胱甘肽过氧化物酶4和硒蛋白S的表达,缓解仔猪肠道内质网应激

阅读:8
作者:Dajiang Ding, Daolin Mou, Heng Zhu, Xuemei Jiang, Lianqiang Che, Zhengfeng Fang, Shengyu Xu, Yan Lin, Yong Zhuo, Jian Li, Chao Huang, Yuanfeng Zou, Lixia Li, De Wu, Bin Feng

Abstract

Endoplasmic reticulum (ER) stress, which can be induced by reactive oxygen species (ROS) and multiple factors, is associated with numerous intestinal diseases. The organic selenium source 2-hydroxy-4-methylselenobutanoic acid (HMSeBA), has been proved to decrease intestinal inflammation and autophagy by improving the expression of selenoproteins. However, it remains unclear whether HMSeBA could alleviate intestinal ER stress by decreasing excessive production of ROS products. This study was conducted to investigate the effect of maternal HMSeBA supplementation on the regulation of intestinal ER stress of their offspring and the regulatory mechanism. Sows were supplemented with HMSeBA during gestation and jejunal epithelial (IPEC-J2) cells were treatment with HMSeBA. Results showed that maternal HMSeBA supplementation significantly upregulated mRNA level of selenoprotein S (SELS) in the jejunum of newborn and weaned piglets compared with the control group, while decreased the gene expression and protein abundance of ER stress markers in the jejunum of LPS challenged weaned piglets. In addition, HMSeBA treatment significantly increased the expression of glutathione peroxidase 4 (GPX4) and SELS, while decreased ROS level and the expression of ER stress markers induced by hydrogen peroxide (H2O2) in IPEC-J2 cells. Furthermore, knockdown of GPX4 did not enhance the ERS signal induced by H2O2, but the lack of GPX4 would cause further deterioration of ER stress signal in the absence of SELS. In conclusion, maternal HMSeBA supplementation might alleviate ROS induced intestinal ER stress by improving the expression of SELS and GPX4 in their offspring. Thus, maternal HMSeBA supplementation might be benefit for the intestinal health of their offspring.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。