Effector-mediated subversion of proteasome activator (PA)28αβ enhances host defense against Legionella pneumophila under inflammatory and oxidative stress conditions

效应子介导的蛋白酶体激活剂 (PA)28αβ 的破坏增强了宿主在炎症和氧化应激条件下对嗜肺军团菌的防御能力

阅读:11
作者:Tshegofatso Ngwaga, Deepika Chauhan, Abigail G Salberg, Stephanie R Shames

Abstract

Legionella pneumophila is a natural pathogen of amoebae that causes Legionnaires' Disease in immunocompromised individuals via replication within macrophages. L. pneumophila virulence and intracellular replication hinges on hundreds of Dot/Icm-translocated effector proteins, which are essential for biogenesis of the replication-permissive Legionella-containing vacuole (LCV). However, effector activity can also enhance mammalian host defense via effector-triggered immunity. The L. pneumophila effector LegC4 is important for virulence in amoebae but enhances host defense against L. pneumophila in the mouse lung and, uniquely, within macrophages activated with either tumor necrosis factor (TNF) or interferon (IFN)-γ. The mechanism by which LegC4 potentiates cytokine-mediated host defense in macrophages is unknown. Here, we found that LegC4 enhances cytokine-mediated phagolysosomal fusion with Legionella-containing vacuole (LCV) and binds host proteasome activator (PA)28α, which forms a heterooligomer with PA28β to facilitate ubiquitin-independent proteasomal degradation of oxidant-damaged (carbonylated) proteins. We found that oxidative stress was sustained in the presence of LegC4 and that the LegC4 restriction phenotype was relieved in PA28αβ-deficient macrophages and in the lungs of mice in vivo. Our data also show that oxidative stress is sufficient for LegC4-mediated restriction in macrophages producing PA28αβ. PA28αβ has been traditionally associated with antigen presentation; however, our data support a novel mechanism whereby effector-mediated subversion of PA28αβ enhances cell-autonomous host defense against L. pneumophila under inflammatory and oxidative stress conditions. This work provides a solid foundation to evaluate induced proteasome regulators as mediators of innate immunity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。