Acetylation of calmodulin regulates synaptic plasticity and fear learning

钙调蛋白乙酰化调节突触可塑性和恐惧学习

阅读:6
作者:Hai-Long Zhang, Bing Zhao, Wei Han, Yi-Bei Sun, Pin Yang, Yongjun Chen, Duan Ni, Jian Zhang, Dong-Min Yin

Abstract

Synaptic plasticity is critical for brain function, including learning and memory. It is regulated by gene transcription and protein synthesis as well as posttranslational modifications at synapses. Although protein acetylation has been shown to be involved in the regulation of synaptic plasticity, this was mainly for histone protein acetylation. To investigate whether acetylation of nonhistone proteins is important for synaptic plasticity, we analyzed mouse brain acetylome and found that calmodulin (CaM), a ubiquitous Ca2+ sensor, was acetylated on three lysine residues, which were conserved across species. NMDA receptor-dependent long-term potentiation (LTP) is considered the most compelling form of synaptic plasticity. During LTP induction, activation of NMDA receptor triggers Ca2+ influx, and the Ca2+ binds with CaM and activates calcium/calmodulin-dependent protein kinase IIα (CaMKIIα), which is essential for LTP induction. By using home-generated and site-specific antibodies against acetylated CaM, we show that CaM acetylation is upregulated by neural activities in an NMDA receptor-dependent manner. Moreover, mutation of acetyllysines in CaM1 proteins disrupts synaptic plasticity and fear learning in a mouse model. We further demonstrate that acetylation of CaM reduces the binding free energy and increases the binding affinity toward CaMKIIα, a protein kinase pivotal to synaptic plasticity and learning. Taken together, our results demonstrate importance of CaM acetylation in regulating synaptic plasticity and learning.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。