Astragaloside IV Promotes Adult Neurogenesis in Hippocampal Dentate Gyrus of Mouse through CXCL1/CXCR2 Signaling

黄芪甲苷通过 CXCL1/CXCR2 信号促进小鼠海马齿状回成体神经发生

阅读:5
作者:Fei Huang, Yunyi Lan, Liyue Qin, Huaihuai Dong, Hailian Shi, Hui Wu, Qinrui Zou, Zhibi Hu, Xiaojun Wu

Abstract

Astragaloside IV (ASI) has been reported to promote neural stem cells proliferation in vitro and CXCR2 expression on neutrophils. The present study was aimed to investigate the influence of ASI on adult neurogenesis in hippocampal dentate gyrus (DGs) of mouse and to discuss the possible underlying mechanisms. Total number of proliferative cells (BrdU⁺), pre-mature neurons (DCX⁺), early proliferative cells (BrdU⁺/DCX⁺), proliferative radial gila-like cells (BrdU⁺/GFAP⁺) and newly generated neurons (BrdU⁺/NeuN⁺) after ASI or vehicle administration for two weeks were counted, respectively. The results showed that BrdU⁺ cells and DCX⁺ cells were significantly increased in DGs of mice administered with ASI. The numbers of BrdU⁺/DCX⁺, BrdU⁺/GFAP⁺ cells and BrdU⁺/NeuN⁺ cells were also elevated in the ASI group. Correspondingly, ASI increased the protein expression of hippocampal DCX, GFAP and NeuN. Further study disclosed that ASI remarkably up-regulated the mRNA and protein expressions of CXCL1 as well as that of CXCR2 in the hippocampus. The promotive effect of ASI on DCX, GFAP and NeuN protein expression was abolished by SB225002, the inhibitor of CXCR2. Our results indicated that ASI modulated the homeostasis of the CXCL1/CXCR2 signaling pathway, which might be responsible for the increased neurogenesis within the hippocampal DGs of mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。