Characterization of the chromatin accessibility in an Alzheimer's disease (AD) mouse model

阿尔茨海默病 (AD) 小鼠模型中染色质可及性的表征

阅读:4
作者:Yaqi Wang, Xiaomin Zhang, Qiao Song, Yuli Hou, Jing Liu, Yu Sun, Peichang Wang

Background

The pathological hallmarks of Alzheimer's disease (AD) involve alterations in the expression of numerous genes associated with transcriptional levels, which are determined by chromatin accessibility. Here, the landscape of chromatin accessibility was studied to understand the outline of the transcription and expression of AD-associated metabolism genes in an AD mouse model.

Conclusion

Our study reveals that alterations in chromatin accessibility may be an initial mechanism in AD pathogenesis.

Methods

The assay for transposase-accessible chromatin by sequencing (ATAC-seq) was used to investigate the AD-associated chromatin reshaping in the APPswe/PS1dE9 (APP/PS1) mouse model. ATAC-seq data in the hippocampus of 8-month-old APP/PS1 mice were generated, and the relationship between chromatin accessibility and gene expression was analyzed in combination with RNA sequencing. Gene ontology (GO) analysis was applied to elucidate biological processes and signaling pathways altered in APP/PS1 mice. Critical transcription factors were identified; alterations in chromatin accessibility were further confirmed using chromatin immunoprecipitation assays.

Results

We identified 1690 increased AD-associated chromatin-accessible regions in the hippocampal tissues of APP/PS1 mice. These regions were enriched in genes related to diverse signaling pathways, including the PI3K-Akt, Hippo, TGF-β, and Jak-Stat signaling pathways, which play essential roles in regulating cell proliferation, apoptosis, and inflammatory responses. A total of 1003 decreased chromatin-accessible regions were considered to be related with declined AD-associated biological processes including cellular response to hyperoxia and insulin stimulus, synaptic transmission, and positive regulation of autophagy. In the APP/PS1 hippocampus, 1090 genes were found to be upregulated and 1081 downregulated. Interestingly, enhanced ATAC-seq signal was found in approximately 740 genes, with 43 exhibiting upregulated mRNA levels. Several genes involved in AD development were found to have a significantly increased expression in APP/PS1 mice compared to controls, including Sele, Clec7a, Cst7, and Ccr6. The signatures of numerous transcription factors, including Olig2, NeuroD1, TCF4, and NeuroG2, were found enriched in the AD-associated accessible chromatin regions. The transcription-activating marks of H3K4me3 and H3K27ac were also found increased in the promoters of these genes. These results indicate that the mechanism for the upregulation of genes could be attributed to the enrichment of open chromatin regions with transcription factors motifs and the histone marks H3K4me3 and H3K27ac.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。