MicroRNA-155 is essential for T(H)2-mediated allergen-induced eosinophilic inflammation in the lung

MicroRNA-155 对 T(H)2 介导的过敏原诱发的肺部嗜酸性炎症至关重要

阅读:6
作者:Carina Malmhäll, Sahar Alawieh, You Lu, Margareta Sjöstrand, Apostolos Bossios, Maria Eldh, Madeleine Rådinger

Background

Allergic asthma is a chronic disease of the conducting airways characterized by T(H)2 inflammation and tissue remodeling after exposure to inhaled allergens. Although the T(H)2 profile is undisputed, the underlying molecular mechanisms leading to this abnormal T(H)2 profile remain largely unclear. MicroRNAs (miRNAs) are short noncoding RNAs that are important regulators of gene expression in the immune system. However, the role of miRNAs, specifically miR-155, in the regulation of allergic airway inflammation is unexplored. Objectives: We sought to assess the contribution of miR-155 in a mouse model of allergic airway inflammation.

Conclusions

Our data provides evidence that miR-155 contributes to the regulation of allergic airway inflammation by modulating T(H)2 responses through the transcription factor PU.1.

Methods

To investigate a role for miR-155 in the regulation of allergic inflammation in vivo, we used miR-155 knockout (KO) and wild-type (WT) mice sensitized and exposed to ovalbumin.

Results

miR-155 deficiency resulted in diminished eosinophilic inflammation and mucus hypersecretion in the lungs of allergen-sensitized and allergen-challenged mice compared with WT control animals. This was supported by a reduction in T(H)2 cell numbers and airway T(H)2 cytokine levels and complete abrogation of allergen-induced airway eotaxin-2/CCL24 and periostin levels in miR-155 KO mice. Intranasal instillation of eotaxin-2/CCL24 before allergen challenge partially restored airway eosinophilia in miR-155 KO mice, and adoptive transfer of CD4(+) T cells resulted in a similar degree of airway eosinophilia in miR-155 KO and WT mice. Furthermore, the transcription factor PU.1, a negative regulator of T(H)2 cytokine production, was upregulated in the airways of allergen-challenged miR-155 KO mice compared with WT mice. Conclusions: Our data provides evidence that miR-155 contributes to the regulation of allergic airway inflammation by modulating T(H)2 responses through the transcription factor PU.1.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。