Silibinin Schiff Base Derivatives Counteract CCl4-Induced Acute Liver Injury by Enhancing Anti-Inflammatory and Antiapoptotic Bioactivities

水飞蓟宾席夫碱衍生物通过增强抗炎和抗凋亡生物活性来对抗四氯化碳诱导的急性肝损伤

阅读:2
作者:Rong Xu # ,Siyan Qiu # ,Jie Zhang ,Xiaoli Liu ,Ling Zhang ,Haizhu Xing ,Min You ,Man Wang ,Yuting Lu ,Peng Zhang ,Jing Zhu

Abstract

Background: Silibinin (Sil), a flavonoid lignan-like natural compound derived from milk thistle seeds, has been used to treat hepatic diseases, including early-phase hepatocirrhosis and fatty liver, for many years. However, its poor water solubility limits its gastrointestinal absorption and bioavailability. It clinical use has been limited due to its slow onset of action. Faced with this problem, research on the derivatives of silibinin has been receiving much attention. Purpose: A series of silibinin derivatives with good biosafety and higher hepatoprotective activity were obtained by a safe, efficient and green chemical synthesis method. Patients and methods: First, the carbonyl group in the structure of silibinin was used to obtain silibinin Schiff base derivatives by dehydration condensation with the carboxyl group in the sulfur-containing amino acid. Next, relevant experiments were performed to characterize the structure, physical form and solubility of the derivatives. Then, toxicity tests of the derivatives were performed in LO-2 cells and SD rats to evaluate their biosafety. Finally, the anti-inflammatory and antiapoptotic activities were observed using a carbon tetrachloride (CCl4)-induced acute liver injury model in C57BL/6J mice using silibinin as a control. Results: The studies showed that SS and ST behaved as amorphous substances and showed a significant increase in solubility compared to silibinin. These two derivatives showed low toxicity in biosafety tests and higher bioactivity (anti-inflammatory and anti-apoptotic) than silibinin against acute liver injury induced by CCl4. Conclusion: Two silibinin derivatives (SS and ST) obtained by the Schiff base reaction improved the solubility of the silibinin parent nucleus in biological media with the help of the hydrophilic and amorphous morphology of the ligand. The low toxicity in vivo and in vitro ensures the biosafety of the derivatives. The hepatoprotective activity (anti-inflammatory and anti-apoptotic) was significantly improved compared to silibinin. Keywords: Schiff base; apoptosis; inflammation; silibinin; solubility; sulfur-containing amino acid.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。