Binge-Like Ethanol Drinking Increases Otx2, Wnt1, and Mdk Gene Expression in the Ventral Tegmental Area of Adult Mice

狂饮乙醇会增加成年小鼠腹侧被盖区 Otx2、Wnt1 和 Mdk 基因表达

阅读:11
作者:Cassandre Coles, Amy W Lasek

Abstract

Alcohol use disorder is associated with pathophysiological changes in the dopaminergic system. Orthodenticle homeobox 2 (OTX2) is a transcription factor important for the development of dopaminergic neurons residing in the ventral tegmental area (VTA), a critical region of the brain involved in drug reinforcement. Previous studies have demonstrated that ethanol exposure during embryonic development reduces Otx2 mRNA levels in the central nervous system. We hypothesized that levels of OTX2 would be altered by binge-like ethanol consumption in adult animals. To test this, Otx2 mRNA and protein levels in the mouse VTA were measured by quantitative real-time PCR and western blotting, respectively, after mice drank ethanol for 4 days in a procedure that elicits binge levels of ethanol consumption (drinking in the dark). Expression of known and putative OTX2 transcriptional target genes (Sema3c, Wnt1, and Mdk) were also measured in the VTA after ethanol drinking. Otx2 mRNA and protein levels were elevated in the VTA 24 hours after the fourth drinking session and there was a corresponding increase in the expression of Mdk transcript. Interestingly, Wnt1 transcript was elevated in the VTA immediately after the fourth drinking session but returned to control levels 24 hours later. We next investigated if viral-mediated reduction of Otx2 in the mouse VTA would alter ethanol or sucrose intake. Lentiviral vectors expressing a shRNA targeting Otx2 or a control shRNA were injected into the VTA and mice were tested in the drinking in the dark protocol for ethanol and sucrose drinking. Reducing levels of OTX2 in the VTA did not alter ethanol or sucrose consumption. One limitation is that the extent of OTX2 reduction may not have been sufficient. Although OTX2 in the VTA may not play a role in binge-like drinking in adult mice, OTX2 could contribute to ethanol-induced transcriptional changes in this region.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。