HSPA1A Protects Cells from Thermal Stress by Impeding ESCRT-0-Mediated Autophagic Flux in Epidermal Thermoresistance

HSPA1A 通过阻碍表皮热抗性中的 ESCRT-0 介导的自噬通量来保护细胞免受热应激

阅读:4
作者:Shan Wu, Qing Pei, Wei Ni, Xiujun Fu, Wen Zhang, Chenlu Song, Yinbo Peng, Qige Guo, Jiying Dong, Min Yao

Abstract

Thermoresistance is a physiological phenomenon relevant to noninvasive laser treatments for skin esthetics and tumor removal, although the underlying mechanism remains elusive. We hypothesized that HSPA1A may regulate autophagy by reducing ESCRT-0 and/or STAM2 levels, which could lead to thermal protection from cell death. In this study, we showed that thermoresistance was induced in mouse epidermal tissue and HaCaT cells by heating at 45 °C for 10 minutes. Moreover, HSPA1A levels were increased in thermoresistant mouse epidermis and HaCaT cells. HSPA1A was highly involved in protecting cells from thermal cytotoxicity, as evidenced by the knockdown or overexpression assays of the HSPA1A gene. In addition, ESCRT-0 and STAM2 levels were dramatically decreased in thermoresistant cells, which was mediated by HSPA1A binding to STAM2, particularly through HSPA1A amino acids 395‒509. Furthermore, the loss of ESCRT-0 and/or STAM2 in response to HSPA1A-STAM2 binding regulated autophagy by impeding autophagosome‒lysosome fusion and abolishing autophagic flux in cellular thermoresistance, significantly reducing thermal cytotoxicity and promoting cell survival. To our knowledge, it is previously unreported that HSPA1A-ESCRT-0 and/or STAM2 modulates heat-induced resistance by inhibiting autophagic flux. In summary, the results of this study demonstrate that the mechanisms of thermoresistance may have clinical relevance for noninvasive or minimally invasive thermal therapeutics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。