Parthenolide plays a protective role in the liver of mice with metabolic dysfunction‑associated fatty liver disease through the activation of the HIPPO pathway

小白菊内酯通过激活 HIPPO 通路对患有代谢功能障碍相关脂肪肝的小鼠的肝脏发挥保护作用

阅读:6
作者:Weihong Wang #, Yukai He #, Qiuli Liu

Abstract

Metabolic dysfunction‑associated fatty liver disease (MAFLD) is a serious threat to human health. Parthenolide (PAR) displays several important pharmacological activities, including the promotion of liver function recovery during hepatitis. The aim of the present study was to assess the effect of PAR on MAFLD in a mouse model. Body weight, liver to body weight ratios, histological score, alanine transaminase, aspartate transaminase, total cholesterol and triglyceride levels were determined to evaluate liver injury. Liver hydroxyproline concentrations were also assessed. The expression levels of lipid metabolism‑related genes (sterol regulatory element binding protein‑1c, fatty acid synthase, acetyl CoA carboxylase 1, stearoyl CoA desaturase 1 and carbohydrate response element‑binding protein, peroxisome proliferator‑activated receptor α, carnitine palmitoyl transferase 1α and acyl‑CoA dehydrogenase short chain), liver fibrosis‑associated genes (α‑smooth muscle actin, tissue inhibitor of metalloproteinase 1 and TGF‑β1), pro‑inflammatory cytokines (TNF‑α, IL‑1β and IL‑6) and oxidative stress‑associated enzymes (malondialdehyde, superoxide dismutase and glutathione peroxidase) were measured in mice with MAFLD. The expression levels of genes associated with the HIPPO pathway were also measured. In vivo experiments using a specific inhibitor of HIPPO signalling were performed to verify the role of this pathway in the effects of PAR. PAR exerted beneficial effects on liver injury, lipid metabolism, fibrosis, inflammation and oxidative stress in mice with MAFLD, which was mediated by activation of the HIPPO pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。