Uric acid induces caspase-1 activation, IL-1β secretion and P2X7 receptor dependent proliferation in primary human lymphocytes

尿酸诱导人原代淋巴细胞中 caspase-1 活化、IL-1β 分泌和 P2X7 受体依赖性增殖

阅读:8
作者:T Eleftheriadis, G Pissas, A Karioti, G Antoniadi, S Golfinopoulos, V Liakopoulos, A Mamara, M Speletas, G Koukoulis, I Stefanidis

Background

Urate through Nacht Domain, Leucine-Rich Repeat, and pyrin domain-containing protein 3 (NALP3) dependent caspase-1 activation stimulates macrophages to secrete inteleukin-1β (IL-1β). Purinergic receptor P2X7 plays a role in the urate induced NALP3 activation. Urate also enhances adaptive immunity indirectly through its effect on antigen presenting cells. In this study, the direct effect of urate on primary human lymphocytes was evaluated.

Conclusions

Urate, a well defined danger signal, stimulates directly human lymphocytes in a P2X7 dependent way. The subsequent IL-1β secretion could enhance inflammation, whereas expansion of lymphocyte clones could facilitate a subsequent adaptive immune response.

Methods

Lymphocytes were cultured with or without monosodium urate crystals in the presence or not of a P2X7 inhibitor. Caspase-1 activity was assessed colorimetrically in cell lysates and IL-1β was measured in supernatants with ELISA. Whole lymphocyte viability and proliferation, as well as T-cell proliferation were assessed by means of 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) assay and of flow cytometry respectively.

Results

Urate induced caspase-1 activation and IL-1β release by lymphocytes. It also induced proliferation of whole lymphocytes and T-cells as well. P2X7 inhibitor abrogated lymphocyte proliferation. Conclusions: Urate, a well defined danger signal, stimulates directly human lymphocytes in a P2X7 dependent way. The subsequent IL-1β secretion could enhance inflammation, whereas expansion of lymphocyte clones could facilitate a subsequent adaptive immune response.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。