Petroleum-derived naphthenic acids disrupt hormone-dependent sexual behaviours in male Western clawed frogs

石油衍生的环烷酸会破坏西方爪蛙雄性的激素依赖性性行为

阅读:5
作者:Wo Su Zhang, Elizabeth J Farmer, Daniella Muhanzi, Vance L Trudeau

Abstract

Naphthenic acids (NAs), the carboxylic acids found in petroleum, are of emerging concern as they contaminate coastlines after oil spills, leech into freshwater ecosystems of oil sands areas and have wide industrial applications. They are acutely toxic in fish and tadpoles and may be endocrine disruptors at sublethal levels. We characterized androgen-dependent courtship behaviours and their disruption by NAs in male Western clawed frogs, Silurana tropicalis. Courtship primarily consists of males producing low trills and achieving amplexus, a mating position where a male clasps a female. Adult males were exposed for 5 days to 20 mg/l NA and injected with human chorionic gonadotropin to induce calling. The duration of calling activity was significantly reduced by NA exposure. Other acoustic parameters such as dominant frequency, click rate and trill length were not affected. Vocalization and amplexus were both inhibited after NA exposure and restored after 2 weeks of recovery in clean water. To determine possible disruption at the level of the testes, the effects of NA exposure on gene expression of key players in steroidogenesis was determined. Exposure to NAs decreased srd5a on average by ~ 25%. The enzyme 5α-reductase, encoded by srd5a, converts testosterone to its more bioactive form 5α-dihydrotestosterone (DHT), so NAs may be affecting this steroidogenic step. However, the observed upregulation of lhr, star and cyp17a1 suggests that NA-exposed males may be attempting to counteract the reduced potential to produce DHT. Yet, these NA-exposed frogs have dramatically reduced calling duration, so the observed upregulation of star and cyp17a1 is decoupled from the vocalizations. Calling duration and the ability of males to amplex females is reversibly disrupted by NA exposure, implying that environmental reduction and removal of NAs may help improve habitability of contaminated ecosystems.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。