Matrix metalloproteinase activity and prostaglandin E2 are elevated in the synovial fluid of meniscus tear patients

半月板撕裂患者滑液中基质金属蛋白酶活性和前列腺素 E2 升高

阅读:5
作者:Betty Liu, Adam P Goode, Teralyn E Carter, Gangadhar M Utturkar, Janet L Huebner, Dean C Taylor, Claude T Moorman 3rd, William E Garrett, Virginia B Kraus, Farshid Guilak, Louis E DeFrate, Amy L McNulty

Conclusions

Given the degradative and pro-inflammatory roles of MMP activity and PGE2, these molecules may alter the biochemical environment of the joint. Our findings suggest that modulation of PGE2 signaling, MMP activity, or both following a meniscus injury may be targets to promote meniscus repair and prevent OA development.

Methods

Sixteen subjects with an isolated unilateral meniscus injury and six subjects who served as reference controls (knee Kellgren-Lawrence grade 0-1) were recruited. Twenty-one biomarkers were measured in serum from meniscus tear subjects and in synovial fluid from both groups. Meniscus tear subjects were further stratified by tear type to assess differences in biomarker levels.

Purpose

Meniscus tears are a common knee injury and are associated with the development of post-traumatic osteoarthritis (OA). The purpose of this study is to evaluate potential OA mediators in the synovial fluid and serum of meniscus tear subjects compared to those in the synovial fluid of radiographic non-OA control knees. Materials and

Results

Synovial fluid total matrix metalloproteinase (MMP) activity and prostaglandin E2 (PGE2) were increased 25-fold and 290-fold, respectively, in meniscus tear subjects as compared to reference controls (p < 0.05). Synovial fluid MMP activity and PGE2 concentrations were positively correlated in meniscus tear subjects (R = 0.83, p < 0.0001). In meniscus tear subjects, synovial fluid levels of MMP activity, MMP-2, MMP-3, sGAG, COMP, IL-6, and PGE2 were higher than serum levels (p < 0.05). Subjects with complex meniscus tears had higher synovial fluid MMP-10 (p < 0.05) and reduced serum TNFα and IL-8 (p < 0.05) compared to other tear types. Conclusions: Given the degradative and pro-inflammatory roles of MMP activity and PGE2, these molecules may alter the biochemical environment of the joint. Our findings suggest that modulation of PGE2 signaling, MMP activity, or both following a meniscus injury may be targets to promote meniscus repair and prevent OA development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。