Med19 is involved in chemoresistance by mediating autophagy through HMGB1 in breast cancer

Med19 通过 HMGB1 介导乳腺癌中的自噬,从而参与化学耐药性

阅读:5
作者:Beibei Liu, Xiaowei Qi, Xiufen Zhang, Danfeng Gao, Kai Fang, Zijian Guo, Lihua Li

Abstract

Adriamycin (ADM)-based regimens are the most effective chemotherapeutic treatments for breast cancer. However, intrinsic and acquired chemoresistance is a major therapeutic problem. Our goal was to clarify the role of mediator complex subunit 19 (Med19) in chemotherapy resistance and to elucidate the related molecular mechanisms. In this study, ADM-resistant human cells (MCF-7/ADM) and tissues exhibited increased Med19 expression and autophagy levels relative to the corresponding control groups. Additionally, MCF-7/ADM cells showed changes in two selective markers of autophagy. There was a dose-dependent increase in the light chain 3 (LC3)-II/LC3-I ratio and a decrease in sequestosome 1 (P62/SQSTMl) expression. Furthermore, lentivirus-mediated Med19 inhibition significantly attenuated the LC3-II/LC3-I ratio, autophagy-related gene 3 (Atg3) and autophagy-related gene 5 (Atg5) expression, P62 degradation, and red fluorescent protein-LC3 dot formation after treatment with ADM or rapamycin, an autophagy activator. Furthermore, the antiproliferative effects of ADM, cisplatin (DDP), and taxol (TAX) were significantly enhanced after suppressing Med19 expression. Notably, the effects of Med19 on autophagy were mediated through the high-mobility group box-1 (HMGB1) pathway. Our findings suggest that Med19 suppression increased ADM chemosensitivity by downregulating autophagy through the inhibition of HMGB1 signaling in human breast cancer cells. Thus, the regulatory mechanisms of Med19 in autophagy should be investigated to reduce tumor resistance to chemotherapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。