Soluble CD14 inhibits contractile function and insulin action in primary adult rat cardiomyocytes

可溶性 CD14 抑制原代成年大鼠心肌细胞的收缩功能和胰岛素作用

阅读:4
作者:Sabrina Overhagen, Marcel Blumensatt, Pia Fahlbusch, Daniella Herzfeld de Wiza, Heidi Müller, Bujar Maxhera, Payam Akhyari, D Margriet Ouwens

Abstract

Epicardial adipose tissue (EAT) from patients with type 2 diabetes (T2D) is characterized by monocyte infiltrations and displays an elevated release of the monocyte marker soluble cluster of differentiation 14 (sCD14) versus EAT from patients without T2D. We propose that an increased abundance of sCD14 in EAT from patients with T2D may impair the function and insulin sensitivity of the adjacent cardiomyocytes. To examine this, primary adult rat cardiomyocytes were incubated with increasing concentrations of sCD14 in the presence and absence of the co-receptor lipopolysaccharide (LPS), and analyzed for effects on determinants of contractile function, activation of inflammation signalling and insulin action. Exposing cardiomyocytes to sCD14 increased the phosphorylation of the stress kinases p38 and extracellular-signal regulated kinase (ERK). In contrast, insulin-mediated phosphorylation of Akt on Thr308 and Ser473 was inhibited. Furthermore, sCD14 impaired sarcomere shortening and cytosolic Ca2+-fluxes. All responses were concentration-dependent and became significant at 1ng/ml sCD14. LPS, either alone or in complex with sCD14, did not affect contractile function or the activation of stress kinases and insulin signalling pathways. Similar data on protein phosphorylation were obtained when exposing human umbilical vein endothelial cells to sCD14. Finally, pharmacological inhibition of p38 reversed the detrimental effects of sCD14 on contractile function, but not on sCD14-induced insulin resistance. Collectively, these data show that sCD14 impairs the function and insulin sensitivity of cardiomyocytes, suggesting that an enhanced sCD14 release from EAT in patients with T2D may contribute to the pathogenesis of diabetes-related cardiometabolic complications.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。