A Robust Bioderived Wavelength-Specific Photosensor Based on BLUF Proteins

基于 BLUF 蛋白的坚固生物源波长特异性光传感器

阅读:7
作者:Jing Tong, Peng Zhang, Lei Zhang, Dongwei Zhang, David N Beratan, Haifeng Song, Yi Wang, Tie Li

Abstract

Photosensitive proteins are naturally evolved photosensors that often respond to light signals of specific wavelengths. However, their poor stability under ambient conditions hinders their applications in non-biological settings. In this proof-of-principle study, we grafted the blue light using flavin (BLUF) protein reconstructed with flavin adenine dinucleotide (FAD) or roseoflavin (RoF) onto pristine graphene, and achieved selective sensitivity at 450 nm or 500 nm, respectively. We improved the thermal and operational stability substantially via structure-guided cross-linking, achieving 6-month stability under ambient condition and normal operation at temperatures up to 200 °C. Furthermore, the device exhibited rare negative photoconductivity behavior. The origins of this negative photoconductivity behavior were elucidated via a combination of experimental and theoretical analysis. In the photoelectric conversion studies, holes from photoexcited flavin migrated to graphene and recombined with electrons. The device allows facile modulation and detection of charge transfer, and provides a versatile platform for future studies of photoinduced charge transfer in biosensors as well as the development of stable wavelength-selective biophotosensors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。