Optogenetic-induced muscle loading leads to mechanical adaptation of the Achilles tendon enthesis in mice

光遗传学诱导的肌肉负荷导致小鼠跟腱附着点的机械适应

阅读:7
作者:Elahe Ganji, Syeda N Lamia, Matthew Stepanovich, Noelle Whyte, Robert W Goulet, Adam C Abraham, Megan L Killian

Abstract

Skeletal shape depends on the transmission of contractile muscle forces from tendon to bone across the enthesis. Loss of muscle loading impairs enthesis development, yet little is known if and how the postnatal enthesis adapts to increased loading. Here, we studied adaptations in enthesis structure and function in response to increased loading, using optogenetically induced muscle contraction in young (i.e., growth) and adult (i.e., mature) mice. Daily bouts of unilateral optogenetic loading in young mice led to radial calcaneal expansion and warping. This also led to a weaker enthesis with increased collagen damage in young tendon and enthisis, with little change in adult mice. We then used RNA sequencing to identify the pathways associated with increased mechanical loading during growth. In tendon, we found enrichment of glycolysis, focal adhesion, and cell-matrix interactions. In bone, we found enrichment of inflammation and cell cycle. Together, we demonstrate the utility of optogenetic-induced muscle contraction to elicit in vivo adaptation of the enthesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。