Profiles of travelers to intermediate-high health risk areas following the reopening of borders in the COVID-19 crisis: A clustering approach

新冠疫情期间重新开放边境后前往中高健康风险地区的旅行者概况:聚类方法

阅读:6
作者:Nidia M García-Marín, Gustavo A Marrero, Ana Guerra-Neira, Almudena Rivera-Deán

Background

The reactivation of international travel in 2021 has created a new scenario in which the profile of the traveler to medium-high health risk areas may well have changed. However, few studies have analyzed this new profile since the reopening of borders in that year.

Conclusions

Broadening our knowledge of the profiles of travelers to intermediate-high health risk areas would help to tailor the health advice provided by practitioners to their characteristics and type of travel. In a changing health context, the k-means approach supposes a flexible statistical method that calculates travelers' profiles and can be easily adapted to process new information.

Methods

We designed an ad hoc questionnaire that was administered face-to-face by our medical team during appointments with 330 travelers in the second half of 2021. Information was collected on the following topics: sociodemographic and socioeconomic status; type of travel and previous travel experience; health status and risk perception (of COVID-19 and tropical infectious diseases). Using all features simultaneously, an unsupervised machine learning approach (k-means) is implemented to characterize groups of travelers. Pairwise chi-squared tests were performed to identify key features that showed statistically significant differences between clusters.

Results

The travelers were clustered into seven groups. We associated the clusters with different intensities of perceived risk of acquiring COVID-19 and tropical infectious diseases on the trip. The perceived risk of both diseases was low in the group "middle or lower middle class young inexperienced male tourist" but high in the group "middle or lower middle-class young with children inexperienced business traveler". Conclusions: Broadening our knowledge of the profiles of travelers to intermediate-high health risk areas would help to tailor the health advice provided by practitioners to their characteristics and type of travel. In a changing health context, the k-means approach supposes a flexible statistical method that calculates travelers' profiles and can be easily adapted to process new information.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。