New insights on the differential interaction of sulfiredoxin with members of the peroxiredoxin family revealed by protein-protein docking and experimental studies

蛋白质对接和实验研究揭示了硫氧还蛋白与过氧化物酶家族成员的差异相互作用的新见解

阅读:6
作者:Murli Mishra, Hong Jiang, Qiou Wei

Abstract

Sulfiredoxin (Srx) is the enzyme that restores the peroxidase activity of peroxiredoxins (Prxs) through catalyzing the reduction of hyperoxidized Prxs back to their active forms. This process involves protein-protein interaction in an enzyme-substrate binding manner. The integrity of the Srx-Prx axis contributes to the pathogenesis of various oxidative stress related human disorders including cancer, inflammation, cardiovascular and neurological diseases. The purpose of this study is to understand the structural and molecular biology of the Srx-Prx interaction, which may be of significance for prediction of target site for the novel drug-discovery. Homology modeling and protein-protein docking approaches were applied to examine the Srx-Prx interaction using online platforms including ITASSER, Phyre2, Swissmodel, AlphaFold, MZDOCK and ZDOCK. By in-silico studies, A 26-amino acid motif at the C-terminus of Prx1 was predicted to cause a steric hindrance for the kinetics of the Srx-Prx1 interaction. These predictions were tested in-vitro using purified recombinant proteins including Srx, full-length Prxs, and C-terminus deleted Prxs. We confirmed that deletion of the C-terminus of Prxs significantly enhanced its rate of association with Srx (i.e. >1000 fold increase in the ka of the Srx-Prx1 interaction) with minimal effect on the rate of dissociation (kd). Differential interaction of Srx with individual members of the Prx family was further examined in cultured cells. Taken together, these data add novel molecular and structural insights critical for the understanding of the biology of the Srx-Prx interaction that may be of value for the development of targeted therapy for human disorders.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。