Genome-wide gain-of-function screening identifies EZH2 mediating resistance to PI3Kα inhibitors in oesophageal squamous cell carcinoma

全基因组功能获得筛选鉴定出 EZH2 介导食管鳞状细胞癌对 PI3Kα 抑制剂的耐药性

阅读:6
作者:Hui Xing, Mengshi Gao, Yuxiang Wang, Xu Zhang, Jiajie Shi, Xiang Wang, Xueling Liu, Qingyang Ma, Xiangyin Kong, Chunhao Yang, Jian Ding, Linghua Meng

Abstract

Phosphoinositide-3 kinase alpha (PI3Kα) has been confirmed to be a potential therapeutic target for esophageal squamous cell carcinoma (ESCC), while the potency of PI3Kα inhibitors is often attenuated by concurrent oncogenic signalling pathways. We performed genome-wide gain-of-function screening with a CRISPR-SAM library and identified enhancer of zeste homolog 2 (EZH2) rendering ESCC cells resistant to the PI3Kα inhibitor CYH33. Enhanced expression of EZH2 frequently occurs in ESCC and is related to poor prognosis. Overexpression of full-length EZH2 but not methyltransferase-deficient EZH2 conferred resistance to CYH33, while downregulating EZH2 expression restored sensitivity. EZH2 expression was negatively related to the activity of CYH33 against the proliferation of ESCC cell lines and patient-derived cells. Transcriptomic analysis revealed that EZH2 abrogated CYH33-mediated cell cycle regulation. EZH2 epigenetically suppressed the transcription of CDKN1A, promoting RB phosphorylation and cell cycle progression. Concurrently targeting EZH2 significantly potentiated CYH33 to inhibit the growth of ESCC cells and patient-derived xenografts accompanied by enhanced cell cycle arrest. Taken together, our study demonstrated that an EZH2-p21-RB axis remodeled cell cycle regulation and rendered resistance to PI3Kα inhibitors in ESCC. Simultaneously targeting PI3Kα and EZH2 may provide an effective strategy for ESCC therapy with high expression of EZH2.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。