Abstract
Macrophages play a crucial role in the progression of atherosclerotic lesions. In the current study, we analyzed the expression and function of sestrin1 (SESN1) in the aorta macrophages in a murine atherosclerosis model. We identified high SESN1 expression in the aorta macrophages in atherosclerotic mice. Using lentivirus-mediated SESN1 overexpression in macrophages, we found that SESN1 inhibited oxidized low-density lipoprotein-induced NLRP3 inflammasome activation in lipopolysaccharide (LPS)-primed macrophages, as evidenced by less ASC-NLRP3 complex formation, lower caspase-1 activation, and lower generation of mature IL-1β. Besides, SESN1 impeded oxidized low-density lipoprotein-induced activation of NK-κB signaling in macrophages. Furthermore, SESN1 suppressed cholesterol crystal-induced NLRP3 inflammasome activation and foam cell formation. Adoptive transfer of SESN1 overexpressing macrophages reduced the expression of pro-inflammatory cytokines in infiltrating macrophages and the whole aorta tissue. Adoptive transfer of SESN1 knockdown macrophages enhanced the expression of pro-inflammatory cytokines in infiltrating macrophages and the whole aorta tissue. Overall, our study sheds light on the significance of SESN1 for macrophage-mediated aorta inflammation.
