α-MSH and Foxc2 promote fatty acid oxidation through C/EBPβ negative transcription in mice adipose tissue

α-MSH 和 Foxc2 通过小鼠脂肪组织中的 C/EBPβ 负转录促进脂肪酸氧化

阅读:5
作者:Lu Gan, Zhenjiang Liu, Yizhe Chen, Dan Luo, Fei Feng, Guannv Liu, Chao Sun

Abstract

Alpha melanocyte stimulating hormone (α-MSH) and Forkhead box C2 protein (Foxc2) enhance lipolysis in multiple tissues. However, their relationship in adipose fatty acid oxidation (FAO) remains unclear. Here, we demonstrated that α-MSH and Foxc2 increased palmitate oxidation to CO2 in white (WAT) and brown adipose tissue (BAT). C/EBPβ expression was reduced by α-MSH and Foxc2. FFA level was elevated by α-MSH and pc-Foxc2 treatment along with increased FAO in white and brown adipocytes. The expression of FAO key enzymes, medium-chain acyl-CoA dehydrogenase (MCAD) and long-chain acyl-CoA dehydrogenase (LCAD) were increased in α-MSH and pc-Foxc2 group. Combination of α-MSH and Foxc2 treatment synergistically promoted FAO through increasing the activity of CPT-1 and phosphorylation of ACC. We found C/EBPβ bind to MC5R and Foxc2 promoter regions and inhibited FAO. cAMP level was increased by α-MSH and Foxc2 individually treated or combined treatment. Furthermore, cAMP/PKA pathway-specific inhibitor (H89) blocked the FAO, despite in α-MSH and Foxc2 both added group. While forskolin, the cAMP agonist, promoted FAO and enhanced the effect of α-MSH and Foxc2. Collectively, α-MSH and Foxc2 mutual promote FAO in WAT and BAT via cAMP/PKA signal pathway. And C/EBPβ as a transcription suppressor inhibits α-MSH and Foxc2 expression and FAO.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。