Sex-specific differences in primary neonatal murine lung fibroblasts exposed to hyperoxia in vitro: implications for bronchopulmonary dysplasia

体外暴露于高氧的原代新生鼠肺成纤维细胞的性别差异:对支气管肺发育不良的影响

阅读:9
作者:Swathi Balaji, Xiaoyu Dong, Hui Li, Yuhao Zhang, Emily Steen, Krithika Lingappan

Abstract

Bronchopulmonary dysplasia (BPD) is a chronic lung disease of the neonate characterized by impaired alveolarization and vascular growth. BPD is more common in premature male infants, but the reasons underlying sexually dimorphic outcomes are not known. It is thought that alterations in fibroblast phenotype in response to environmental stress such as hyperoxia contribute to BPD. Notch signaling creates a profibrotic environment in the lung. However, the role of hyperoxia on differential Notch pathway activation in male vs. female neonatal lung fibroblasts is not known. Primary murine lung fibroblasts from 10-day-old male and female mice were exposed to room air (21% O2, 5% CO2) or hyperoxia (95% O2, 5% CO2), and changes in cell proliferation, viability and expression of fibrosis-related genes and Notch pathway mediators were measured. Upon exposure to hyperoxia, cell proliferation was arrested in male and female fibroblasts, but cell viability was preserved. Increased Notch pathway activation was noted in male fibroblasts along with differential sex-specific modulation of key Notch pathway mediators in response to hyperoxia. α-Smooth muscle actin expression was increased in both male and female fibroblasts upon exposure to hyperoxia. Male and female fibroblasts further demonstrated distinct changes in expression of key fibrosis-related genes upon exposure to hyperoxia. Differential Notch pathway activation and distinct differences in the expression of key fibrosis-related genes might contribute to the sex-specific differences seen in hyperoxia-induced fibrosis and inhibition of lung development in BPD, with more severe implications in male neonates.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。