Oxidative guanine base damage regulates human telomerase activity

氧化性鸟嘌呤碱基损伤调节人类端粒酶活性

阅读:6
作者:Elise Fouquerel, Justin Lormand, Arindam Bose, Hui-Ting Lee, Grace S Kim, Jianfeng Li, Robert W Sobol, Bret D Freudenthal, Sua Myong, Patricia L Opresko

Abstract

Changes in telomere length are associated with degenerative diseases and cancer. Oxidative stress and DNA damage have been linked to both positive and negative alterations in telomere length and integrity. Here we examined how the common oxidative lesion 8-oxo-7,8-dihydro-2'-deoxyguanine (8-oxoG) regulates telomere elongation by human telomerase. When 8-oxoG is present in the dNTP pool as 8-oxodGTP, telomerase utilization of the oxidized nucleotide during telomere extension is mutagenic and terminates further elongation. Depletion of MTH1, the enzyme that removes oxidized dNTPs, increases telomere dysfunction and cell death in telomerase-positive cancer cells with shortened telomeres. In contrast, a preexisting 8-oxoG within the telomeric DNA sequence promotes telomerase activity by destabilizing the G-quadruplex DNA structure. We show that the mechanism by which 8-oxoG arises in telomeres, either by insertion of oxidized nucleotides or by direct reaction with free radicals, dictates whether telomerase is inhibited or stimulated and thereby mediates the biological outcome.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。