Transcriptional profiling of Microtus fortis responses to S. japonicum: New sight into Mf-Hsp90α resistance mechanism

东方田鼠对日本血吸虫反应的转录谱分析:Mf-Hsp90α 抗性机制的新见解

阅读:15
作者:Dehui Xiong, Saiqun Luo, Kunlu Wu, Yuanjing Yu, Jiameng Sun, Yanpeng Wang, Jingping Hu, Weixin Hu

Aims

Schistosomiasis is a parasitic disease with a chronic debilitating character caused by parasitic flatworms of the genus Schistosoma. The main disease-causing species of Schistosoma in China is S. japonicum. M fortis has been proved to be a nonpermissive host of S. japonicum. Mf-HSP90α (Microtus fortis heat shock protein 90alpha), the homologue of HSP90α, display anti-schistosome effect in vitro and in vivo. In the current study, in order to investigate the mechanism of anti-schistosome effect of Mf-HSP90α, we conducted RNA-Seq to obtain the transcriptome profile of M. fortis liver infected with S. japonicum at different time points.

Conclusions

The IL-10-JAK2/STAT1-HSP90α axis was associated with the anti-schistosome effect of Mf-HSP90α, and targeting IL-10-JAK2/STAT1-HSP90α axis might be a novel therapeutic strategy for developing resistance to S. japonicum infection.

Results

By mapping the differential expressed genes (DEGs) to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), we found that the JAK2/STAT1 pathway was highly enriched with an elevated level of IL-10 and HSP90α. We then checked the IL-10-JAK2/STAT1-HSP90α pathway, and found that this pathway was activated in the infected mice with S. japonicum. The expression of the molecules in this pathway was elevated on the 10th day after infection and gradually decreased on the 20th day. Conclusions: The IL-10-JAK2/STAT1-HSP90α axis was associated with the anti-schistosome effect of Mf-HSP90α, and targeting IL-10-JAK2/STAT1-HSP90α axis might be a novel therapeutic strategy for developing resistance to S. japonicum infection.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。