Enzymatically amplified linear dbDNATM as a rapid and scalable solution to industrial lentiviral vector manufacturing

酶促扩增线性 dbDNATM 作为工业慢病毒载体制造的快速可扩展解决方案

阅读:6
作者:Maria Barreira, Claire Kerridge, Sara Jorda, Didrik Olofsson, Alexander Neumann, Helen Horton, Sarah Smith-Moore

Abstract

Traditional bacterial fermentation techniques used to manufacture plasmid are time-consuming, expensive, and inherently unstable. The production of sufficient GMP grade material thus imposes a major bottleneck on industrial-scale manufacturing of lentiviral vectors (LVV). Touchlight's linear doggybone DNA (dbDNATM) is an enzymatically amplified DNA vector produced with exceptional speed through an in vitro dual enzyme process, enabling industrial-scale manufacturing of GMP material in a fraction of the time required for plasmid. We have previously shown that dbDNATM can be used to produce functional LVV; however, obtaining high LVV titres remained a challenge. Here, we aimed to demonstrate that dbDNATM could be optimised for the manufacture of high titre LVV. We found that dbDNATM displayed a unique transfection and expression profile in the context of LVV production, which necessitated the optimisation of DNA input and construct ratios. Furthermore, we demonstrate that efficient 3' end processing of viral genomic RNA (vgRNA) derived from linear dbDNATM transfer vectors required the addition of a strong 3' termination signal and downstream spacer sequence to enable efficient vgRNA packaging. Using these improved vector architectures along with optimised transfection conditions, we were able to produce a CAR19h28z LVV with equivalent infectious titres as achieved using plasmid, demonstrating that dbDNATM technology can provide a highly effective solution to the plasmid bottleneck.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。