Tumor necrosis factor alpha maintains denervation-induced homeostatic synaptic plasticity of mouse dentate granule cells

肿瘤坏死因子α维持小鼠齿状颗粒细胞失神经支配诱导的稳态突触可塑性

阅读:4
作者:Denise Becker, Nadine Zahn, Thomas Deller, Andreas Vlachos

Abstract

Neurons which lose part of their input respond with a compensatory increase in excitatory synaptic strength. This observation is of particular interest in the context of neurological diseases, which are accompanied by the loss of neurons and subsequent denervation of connected brain regions. However, while the cellular and molecular mechanisms of pharmacologically induced homeostatic synaptic plasticity have been identified to a certain degree, denervation-induced homeostatic synaptic plasticity remains not well understood. Here, we employed the entorhinal denervation in vitro model to study the role of tumor necrosis factor alpha (TNFα) on changes in excitatory synaptic strength of mouse dentate granule cells following partial deafferentation. Our experiments disclose that TNFα is required for the maintenance of a compensatory increase in excitatory synaptic strength at 3-4 days post lesion (dpl), but not for the induction of synaptic scaling at 1-2 dpl. Furthermore, laser capture microdissection combined with quantitative PCR demonstrates an increase in TNFα-mRNA levels in the denervated zone, which is consistent with our previous finding on a local, i.e., layer-specific increase in excitatory synaptic strength at 3-4 dpl. Immunostainings for the glial fibrillary acidic protein and TNFα suggest that astrocytes are a source of TNFα in our experimental setting. We conclude that TNFα-signaling is a major regulatory system that aims at maintaining the homeostatic synaptic response of denervated neurons.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。