Smooth Muscle Cell Proangiogenic Phenotype Induced by Cyclopentenyl Cytosine Promotes Endothelial Cell Proliferation and Migration

环戊烯基胞嘧啶诱导的平滑肌细胞促血管生成表型促进内皮细胞增殖和迁移

阅读:4
作者:Rui Tang, Gui Zhang, Shi-You Chen

Abstract

Vascular smooth muscle cells (SMCs) and endothelial cells (ECs) are in close contact with blood vessels. SMC phenotypes can be altered during pathological vascular remodeling. However, how SMC phenotypes affect EC properties remains largely unknown. In this study, we found that PDGF-BB-induced synthetic SMCs suppressed EC proliferation and migration while exhibiting increased expression of anti-angiogenic factors, such as endostatin, and decreased pro-angiogenic factors, including CXC motif ligand 1 (CXCL1). Cyclopentenyl cytosine (CPEC), a CTP synthase inhibitor that has been reported previously to inhibit SMC proliferation and injury-induced neointima formation, induced SMC redifferentiation. Interestingly, CPEC-conditioned SMC culture medium promoted EC proliferation and migration because of an increase in CXCL1 along with decreased endostatin production in SMCs. Addition of recombinant endostatin protein or blockade of CXCL1 with a neutralizing antibody suppressed the EC proliferation and migration induced by CPEC-conditioned SMC medium. Mechanistically, CPEC functions as a cytosine derivate to stimulate adenosine receptors A1 and A2a, which further activate downstream cAMP and Akt signaling, leading to the phosphorylation of cAMP response element binding protein and, consequently, SMC redifferentiation. These data provided proof of a novel concept that synthetic SMC exhibits an anti-angiogenic SMC phenotype, whereas contractile SMC shows a pro-angiogenic phenotype. CPEC appears to be a potent stimulator for switching the anti-angiogenic SMC phenotype to the pro-angiogenic phenotype, which may be essential for CPEC to accelerate re-endothelialization for vascular repair during injury-induced vascular wall remodeling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。