Reduced high-frequency motor neuron firing, EMG fractionation, and gait variability in awake walking ALS mice

清醒行走的 ALS 小鼠的高频运动神经元放电、肌电图分馏和步态变异性降低

阅读:5
作者:Muhamed Hadzipasic, Weiming Ni, Maria Nagy, Natalie Steenrod, Matthew J McGinley, Adi Kaushal, Eleanor Thomas, David A McCormick, Arthur L Horwich

Abstract

Amyotrophic lateral sclerosis (ALS) is a lethal neurodegenerative disease prominently featuring motor neuron (MN) loss and paralysis. A recent study using whole-cell patch clamp recording of MNs in acute spinal cord slices from symptomatic adult ALS mice showed that the fastest firing MNs are preferentially lost. To measure the in vivo effects of such loss, awake symptomatic-stage ALS mice performing self-initiated walking on a wheel were studied. Both single-unit extracellular recordings within spinal cord MN pools for lower leg flexor and extensor muscles and the electromyograms (EMGs) of the corresponding muscles were recorded. In the ALS mice, we observed absent or truncated high-frequency firing of MNs at the appropriate time in the step cycle and step-to-step variability of the EMG, as well as flexor-extensor coactivation. In turn, kinematic analysis of walking showed step-to-step variability of gait. At the MN level, the higher frequencies absent from recordings from mutant mice corresponded with the upper range of frequencies observed for fast-firing MNs in earlier slice measurements. These results suggest that, in SOD1-linked ALS mice, symptoms are a product of abnormal MN firing due at least in part to loss of neurons that fire at high frequency, associated with altered EMG patterns and hindlimb kinematics during gait.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。