The study of Raddeanin A cerebrovascular endothelial cell trafficking through P-glycoprotein

Raddeanin A通过P-糖蛋白介导脑血管内皮细胞运输的研究

阅读:5
作者:Yue-Yue Wang, Chun-Feng Jiang, Xin Liu, Jian-Nan Li, Guang-Zhi Cai, Ji-Yu Gong

Abstract

As one of the natural triterpenoids isolated from Anemone Raddeana Regel, Raddeanin A (RA) has been confirmed to possess therapeutic effects against multiple tumorigeneses, especially for the onset of glioblastoma and growth in human brains. However, the mechanism by which this happens remains poorly understood in terms of the vascular endothelium trafficking routine of RA through the brain-blood barrier (BBB). To seek such answers, human brain microenvironment endothelial cells (HBMECs) were used to stimulate the microenvironment in vitro, and to explore the intracellular accumulation of RA. The results of this experiment illustrated that RA has a relative moderate transport affinity for such cells. The kinetic parameter Km was 37.01 ± 2.116 μM and Vmax was 9.412 ± 0.1375 nM/min/mg of protein. Interestingly, protein downregulation of P-glycoprotein (P-gp, ABCB1/MDR1) significantly activated RA transmembrane activity, which proves that P-gp is responsible for RA cellular trafficking. In addition, the selective non-specific inhibitor, LY335979 increased either RA or the classical substrate of P-gp, digoxin, intracellular accumulation by restricting the transporter's function but without jeopardizing cytomembrane proteins. Moreover, a decrease in the expression or activity of P-gp triggered RA drug resistance to HBMECs. In summary, our data showed that both the expression and function of P-gp are all necessary for RA transmembrane trafficking through cerebrovascular endothelial cells. This study provides significant evidence for the presence of a connection between RA transport and P-gp variation during drug BBB penetration. It is also suggesting some vital guidance on the RA pharmacodynamic effect in human brains.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。