Ultrasound molecular imaging in a human CD276 expression-modulated murine ovarian cancer model

人类 CD276 表达调节的小鼠卵巢癌模型中的超声分子成像

阅读:5
作者:Amelie M Lutz, Sunitha V Bachawal, Charles W Drescher, Marybeth A Pysz, Jürgen K Willmann, Sanjiv Sam Gambhir

Conclusions

Our novel small animal model allows for modulating the expression of human tumor-associated vascular endothelial imaging targets in a mouse host and these expression differences can be visualized noninvasively by ultrasound molecular imaging. The animal model can be applied to other human vascular targets and may facilitate the preclinical development of new imaging probes such as microbubbles targeted at human vascular markers not expressed in mice.

Purpose

To develop a mouse ovarian cancer model that allows modulating the expression levels of human vascular targets in mouse xenograft tumors and to test whether expression of CD276 during tumor angiogenesis can be visualized by molecularly targeted ultrasound in vivo. Experimental design: CD276-expressing MILE SVEN 1 (MS1) mouse endothelial cells were engineered and used for coinjection with 2008 human ovarian cancer cells for subcutaneous xenograft tumor induction in 15 nude mice. Fourteen control mice were injected with 2008 cells only. After confirming their binding specificity in flow chamber cell attachment studies, anti-CD276 antibody-functionalized contrast microbubbles were used for in vivo CD276-targeted contrast-enhanced ultrasound imaging.

Results

CD276-targeted ultrasound imaging signal was significantly higher (P = 0.006) in mixed MS1/2008 tumors than in control tumors. Compared with control microbubbles, the ultrasound signal using CD276-targeted microbubbles was significantly higher (P = 0.002), and blocking with purified anti-CD276 antibody significantly decreased (P = 0.0096) the signal in mixed MS1/2008 tumors. Immunofluorescence analysis of the tumor tissue confirmed higher quantitative immunofluorescence signal in mixed MS1/2008 tumors than in control 2008 only tumors, but showed not significantly different (P = 0.54) microvessel density. Conclusions: Our novel small animal model allows for modulating the expression of human tumor-associated vascular endothelial imaging targets in a mouse host and these expression differences can be visualized noninvasively by ultrasound molecular imaging. The animal model can be applied to other human vascular targets and may facilitate the preclinical development of new imaging probes such as microbubbles targeted at human vascular markers not expressed in mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。