Predicting anti-PD-1 responders in malignant melanoma from the frequency of S100A9+ monocytes in the blood

根据血液中 S100A9+ 单核细胞的频率预测恶性黑色素瘤中抗 PD-1 的反应者

阅读:5
作者:Soudabeh Rad Pour #, Yago Pico de Coaña #, Xavier Martinez Demorentin #, Jeroen Melief #, Manjula Thimma, Maria Wolodarski, David Gomez-Cabrero, Johan Hansson, Rolf Kiessling, Jesper Tegner

Background

While programmed cell death receptor 1 (PD-1) blockade treatment has revolutionized treatment of patients with melanoma, clinical outcomes are highly variable, and only a fraction of patients show durable responses. Therefore, there is a clear need for predictive biomarkers to select patients who will benefit from the treatment. Method: To identify potential predictive markers for response to PD-1 checkpoint blockade immunotherapy, we conducted single-cell RNA sequencing analyses of peripheral blood mononuclear cells (PBMC) (n=8), as well as an in-depth immune monitoring study (n=20) by flow cytometry in patients with advanced melanoma undergoing treatment with nivolumab at Karolinska University Hospital. Blood samples were collected before the start of treatment and at the time of the second dose.

Conclusion

Our results suggest that monocytic cell populations can critically determine the outcome of PD-1 blockade, particularly the subset expressing S100A9, which should be further explored as a possible predictive biomarker. Detailed knowledge of the biological role of S100A9+ monocytes is of high translational relevance.

Results

Unbiased single-cell RNA sequencing of PBMC in patients with melanoma uncovered that a higher frequency of monocytes and a lower ratio of CD4+ T cells to monocyte were inversely associated with overall survival. Similarly, S100A9 expression in the monocytic subset was correlated inversely with overall survival. These results were confirmed by a flow cytometry-based analysis in an independent patient cohort.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。