Transcriptional activation of cyclin D1 via HER2/HER3 contributes to EGFR-TKI resistance in lung cancer

通过 HER2/HER3 转录激活细胞周期蛋白 D1 导致肺癌产生 EGFR-TKI 耐药

阅读:5
作者:Bin Liu, Deng Chen, Shipeng Chen, Ali Saber, Hidde Haisma

Abstract

Several different mechanisms are implicated in the resistance of lung cancer cells to epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs), and only few have been functionally investigated. Here, using genetically knocked out EGFR and TKI-resistant lung cancer cells, we show that loss of wild-type EGFR attenuates cell proliferation, migration and 3D-spheroid formation, whereas loss of mutant EGFR or resistance to TKIs reinforces those processes. Consistently, disruption of wild-type EGFR leads to suppression of HER2/HER3, while mutant EGFR ablation or resistance to TKIs increases HER2/HER3 expression, compensating for EGFR loss. Furthermore, HER2/HER3 nuclear translocation mediates overexpression of cyclin D1, leading to tumor cell survival and drug resistance. Cyclin D1/CDK4/6 inhibition resensitizes erlotinib-resistant (ER) cells to erlotinib. Analysis of cyclin D1 expression in patients with non-small cell lung carcinoma (NSCLC) showed that its expression is negatively associated with overall survival and disease-free survival. Our results provide biological and mechanistic insights into targeting EGFR and TKI resistance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。