Proteins from toad's parotoid macroglands: do they play a role in gland functioning and chemical defence?

蟾蜍腮腺大腺中的蛋白质:它们在腺体功能和化学防御中发挥作用吗?

阅读:19
作者:Krzysztof Kowalski, Paweł Marciniak, Leszek Rychlik

Background

Parotoid gland secretion of bufonid toads is a rich source of toxic molecules that are used against predators, parasites and pathogens. Bufadienolides and biogenic amines are the principal compounds responsible for toxicity of parotoid secretion. Many toxicological and pharmacological analyses of parotoid secretions have been performed, but little is known about the processes related to poison production and secretion. Therefore, our

Conclusion

This finding indicates that cholesterol may be synthesized in parotoids, and not only in the liver from which is then transferred through the bloodstream to the parotoid macroglands. Presence of proteins that regulate cell cycle, cell division, aging and apoptosis may indicate a high epithelial cell turnover in parotoids. Proteins protecting skin cells from DNA damage may help to minimize the harmful effects of UV radiation. Thus, our work extends our knowledge with new and important functions of parotoids, major glands involved in the bufonid chemical defence.

Results

Applying a proteomic approach we identified 162 proteins in the extract from toad's parotoids that were classified into 11 categories of biological functions. One-third (34.6%) of the identified molecules, including acyl-CoA-binding protein, actin, catalase, calmodulin, and enolases, were involved in cell metabolism. We found many proteins related to cell division and cell cycle regulation (12.0%; e.g. histone and tubulin), cell structure maintenance (8.4%; e.g. thymosin beta-4, tubulin), intra- and extracellular transport (8.4%), cell aging and apoptosis (7.3%; e.g. catalase and pyruvate kinase) as well as immune (7.0%; e.g. interleukin-24 and UV excision repair protein) and stress (6.3%; including heat shock proteins, peroxiredoxin-6 and superoxide dismutase) response. We also identified two proteins, phosphomevalonate kinase and isopentenyl-diphosphate delta-isomerase 1, that are involved in synthesis of cholesterol which is a precursor for bufadienolides biosynthesis. STRING protein-protein interaction network predicted for identified proteins showed that most proteins are related to metabolic processes, particularly glycolysis, stress response and DNA repair and replication. The results of GO enrichment and KEGG analyses are also consistent with these findings.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。