BDNF-endocannabinoid interactions at neocortical inhibitory synapses require phospholipase C signaling

新皮质抑制突触处的 BDNF-内源性大麻素相互作用需要磷脂酶 C 信号传导

阅读:4
作者:Liangfang Zhao, Eric S Levine

Abstract

Endogenous cannabinoids (endocannabinoids) and neurotrophins, particularly brain-derived neurotrophic factor (BDNF), are potent synaptic modulators that are expressed throughout the forebrain and play critical roles in many behavioral processes. Although the effects of BDNF at excitatory synapses have been well characterized, the mechanisms of action of BDNF at inhibitory synapses are not well understood. Previously we have found that BDNF suppresses presynaptic GABA release in layer 2/3 of the neocortex via postsynaptic tropomyosin-related kinase receptor B (trkB) receptor-induced release of endocannabinoids. To examine the intracellular signaling pathways that underlie this effect, we used pharmacological approaches and whole cell patch-clamp techniques in layer 2/3 pyramidal neurons of somatosensory cortex in brain slices from juvenile Swiss CD1 mice. Our results indicated that phospholipase Cγ (PLCγ) is involved in the CB1 receptor-mediated synaptic effect of BDNF, because the BDNF effect was blocked in the presence of the broad-spectrum PLC inhibitors U-73122 and edelfosine, whereas the inactive analog U-73343 did not alter the suppressive effect of BDNF at inhibitory synapses. Endocannabinoid release can also be triggered by metabotropic glutamate receptor (mGluR)-mediated activation of PLCβ, and BDNF has been shown to enhance spontaneous glutamate release. An mGluR antagonist, E4CPG, however, did not block the BDNF effect. In addition, the effect of BDNF was independent of other signaling pathways downstream of trkB receptor activation, namely, mitogen-activated protein kinase and phosphoinositide 3-kinase pathways, as well as protein kinase C signaling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。