Performance of Ag-doped CuO nanoparticles for photocatalytic activity applications: Synthesis, characterization, and antimicrobial activity

银掺杂 CuO 纳米粒子的光催化活性应用性能:合成、表征和抗菌活性

阅读:5
作者:Ahmed T Mosleh, Elbadawy A Kamoun, Shahira H El-Moslamy, Samar A Salim, Heba Y Zahran, Samer H Zyoud, Ibrahim S Yahia

Abstract

The auto-combustion method synthesized CuO NPs and Ag/CuO NPs. The Ag/CuO NPs were analyzed using Fourier-transform infrared, X-ray diffraction, scanning electron microscope, and Energy-dispersive X-ray spectroscopy instrumental analyses. The energy band gap, as determined by DRS properties, decreases from 3.82 to 3.50 eV for pure CuO and 10% Ag/CuO NPs, respectively. The photodegradation efficiency of Rhodamine-B & Carmine by 10% Ag/CuO NPs was nearly 98.9 and 97.8%, respectively. Antimicrobial trials revealed that the antimicrobial efficacy of Ag/CuO NPs at several dosages (20, 40, 60, 80, 100, and 120 µg/mL) against human pathogens was initially assessed using the agar well-diffusion method, and then the broth dilution method. Noticeably, the minimum inhibitory concentration of Ag/CuO NPs for all pathogens ranged from 100 to 120 µg/ml, was determined. Generally, the observed minimum microbicide concentration has a wide range of Ag/CuO NPs doses, ranging from 150 to 300 µg/ml, which helps kill (99.99%) all tested pathogenic cells. The largest relative inhibitory activities (%) were recorded against Escherichia coli (81.45 ± 1.39) at 120 g/mL of Ag/CuO NPs and 100 μg/mL (80.43 ± 0.59), followed by 80 µg/mL (72.33 ± 0.82). Additionally, the lowest relative inhibitory activities (%) were monitored versus fungal cells and Gram-positive bacteria at 120 µg/mL of Ag/CuO NPs as 52.17 ± 1.49 and 53.42 ± 1.71; respectively.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。