Advancing DNA Steganography with Incorporation of Randomness

结合随机性推进 DNA 隐写术

阅读:6
作者:Meiying Cui, Yixin Zhang

Abstract

DNA has become a promising candidate as a future data storage medium; this makes DNA steganography indispensable in DNA data security. PCR primers are conventional secret keys in DNA steganography. Brute force testing of different primers will be extremely time consuming, and practically unaffordable when high-throughput sequencing is used. However, the encrypted information can be sequenced and read once the primers are intercepted. A new steganography approach is needed to make the DNA-encoded information safer, if not unhackable. Mixing information-carrying DNA with a partially degenerated DNA library containing single or multiple restriction sites, we have built an additional protective layer that can be removed by desired restriction enzymes as secondary secret keys. As PCR is inevitable for reading DNA-encrypted information, heating will cause reshuffling and generate endonuclease-resistant mismatched duplexes, especially for DNA with high sequence diversity. Consequently, with the incorporation of randomness, DNA steganography possesses both quantum key distribution (QKD)-like function for detecting PCR by an interceptor and a self-destructive property. It is noteworthy that the background noise generated through the protective layer is independent from any sequencing technology including Sanger and high-throughput sequencing. With a DNA ink incorporating the steganography, we have shown that the authenticity of a piece of writing can be confirmed only by authorized persons with knowledge of all embedded keys.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。