Reduced platelet forces underlie impaired hemostasis in mouse models of MYH9-related disease

血小板力量降低是 MYH9 相关疾病小鼠模型中止血功能受损的原因

阅读:5
作者:Juliane Baumann, Laura Sachs, Oliver Otto, Ingmar Schoen, Peter Nestler, Carlo Zaninetti, Martin Kenny, Ruth Kranz, Hendrik von Eysmondt, Johanna Rodriguez, Tilman E Schäffer, Zoltan Nagy, Andreas Greinacher, Raghavendra Palankar, Markus Bender

Abstract

MYH9-related disease patients with mutations in the contractile protein nonmuscle myosin heavy chain IIA display, among others, macrothrombocytopenia and a mild-to-moderate bleeding tendency. In this study, we used three mouse lines, each with one point mutation in the Myh9 gene at positions 702, 1424, or 1841, to investigate mechanisms underlying the increased bleeding risk. Agonist-induced activation of Myh9 mutant platelets was comparable to controls. However, myosin light chain phosphorylation after activation was reduced in mutant platelets, which displayed altered biophysical characteristics and generated lower adhesion, interaction, and traction forces. Treatment with tranexamic acid restored clot retraction in the presence of tPA and reduced bleeding. We verified our findings from the mutant mice with platelets from patients with the respective mutation. These data suggest that reduced platelet forces lead to an increased bleeding tendency in patients with MYH9-related disease, and treatment with tranexamic acid can improve the hemostatic function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。