Reduced neuronal size and mTOR pathway activity in the Mecp2 A140V Rett syndrome mouse model

Mecp2 A140V 雷特综合征小鼠模型中的神经元大小和 mTOR 通路活性降低

阅读:7
作者:Sampathkumar Rangasamy, Shannon Olfers, Brittany Gerald, Alex Hilbert, Sean Svejda, Vinodh Narayanan

Abstract

Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutation in the X-linked MECP2 gene, encoding methyl-CpG-binding protein 2. We have created a mouse model ( Mecp2 A140V "knock-in" mutant) expressing the recurrent human MECP2 A140V mutation linked to an X-linked mental retardation/Rett syndrome phenotype. Morphological analyses focused on quantifying soma and nucleus size were performed on primary hippocampus and cerebellum granule neuron (CGN) cultures from mutant ( Mecp2A140V/y) and wild type ( Mecp2+/y) male mice. Cultured hippocampus and cerebellar granule neurons from mutant animals were significantly smaller than neurons from wild type animals. We also examined soma size in hippocampus neurons from individual female transgenic mice that express both a mutant (maternal allele) and a wild type Mecp2 gene linked to an eGFP transgene (paternal allele). In cultures from such doubly heterozygous female mice, the size of neurons expressing the mutant (A140V) allele also showed a significant reduction compared to neurons expressing wild type MeCP2, supporting a cell-autonomous role for MeCP2 in neuronal development. IGF-1 (insulin growth factor-1) treatment of neuronal cells from Mecp2 mutant mice rescued the soma size phenotype. We also found that Mecp2 mutation leads to down-regulation of the mTOR signaling pathway, known to be involved in neuronal size regulation. Our results suggest that i) reduced neuronal size is an important in vitro cellular phenotype of Mecp2 mutation in mice, and ii) MeCP2 might play a critical role in the maintenance of neuronal structure by modulation of the mTOR pathway. The definition of a quantifiable cellular phenotype supports using neuronal size as a biomarker in the development of a high-throughput, in vitro assay to screen for compounds that rescue small neuronal phenotype ("phenotypic assay").

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。