Tumor necrosis factor alpha derived from classically activated "M1" macrophages reduces interstitial cell of Cajal numbers

源自经典激活的“M1”巨噬细胞的肿瘤坏死因子 α 可降低卡哈尔间质细胞数量

阅读:4
作者:S T Eisenman, S J Gibbons, P-J Verhulst, G Cipriani, D Saur, G Farrugia

Background

Delayed gastric emptying in diabetic mice and humans is associated with changes in macrophage phenotype and loss of interstitial cells of Cajal (ICC) in the gastric muscle layers. In diabetic mice, classically activated M1 macrophages are associated with delayed gastric emptying, whereas alternatively activated M2 macrophages are associated with normal gastric emptying. This study aimed to determine if secreted factors from M1 macrophages could injure mouse ICC in primary culture.

Methods

Cultures of gastric ICC were treated with conditioned medium (CM) from activated bone marrow-derived macrophages (BMDMs) and the effect of CM was quantified by counting ICC per high-powered field. Key

Results

Bone marrow-derived macrophages were activated to a M1 or M2 phenotype confirmed by qRT-PCR. Conditioned medium from M1 macrophages reduced ICC numbers by 41.1%, whereas M2-CM had no effect as compared to unconditioned, control media. Immunoblot analysis of 40 chemokines/cytokines found 12 that were significantly increased in M1-CM, including tumor necrosis factor alpha (TNF-α). ELISA detected 0.697±0.03 ng mL-1 TNF-α in M1-CM. Recombinant mouse TNF-α reduced Kit expression and ICC numbers in a concentration-dependent manner (EC50 = 0.817 ng mL-1 ). Blocking M1-CM TNF-α with a neutralizing antibody preserved ICC numbers. The caspase inhibitor Z-VAD.fmk partly preserved ICC numbers (cells/field; 6.63±1.04, 9.82±1.80 w/Z-VAD.fmk, n=6, P<.05). Conclusions & inferences: This work demonstrates that TNF-α secreted from M1 macrophages can result in Kit loss and directly injure ICC in vitro partly through caspase-dependent apoptosis and may play an important role in ICC depletion in diabetic gastroparesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。