Histone demethylase KDM7A reciprocally regulates adipogenic and osteogenic differentiation via regulation of C/EBPα and canonical Wnt signalling

组蛋白去甲基化酶 KDM7A 通过调节 C/EBPα 和经典 Wnt 信号传导相互调节脂肪形成和成骨分化

阅读:5
作者:Xiaoyue Yang, Guannan Wang, Yi Wang, Jie Zhou, Hairui Yuan, Xiaoxia Li, Ying Liu, Baoli Wang

Abstract

Recent emerging evidences revealed that epigenetic methylation of histone and DNA regulates the lineage commitment of mesenchymal progenitor cells. This study was undertaken to delineate the actions of histone lysine demethylase 7A (KDM7A) on osteogenic and adipogenic differentiation. Kdm7a expression was up-regulated in primary marrow stromal cells and established stromal ST2 line after adipogenic and osteogenic treatment. Silencing of endogenous Kdm7a in the cells blocked adipogenic differentiation whereas promoted osteogenic differentiation. Conversely, overexpression of wild-type Kdm7a in the progenitor cells enhanced adipogenic differentiation whereas inhibited osteogenic differentiation. However, the effect of KDM7A on cell differentiation was largely attenuated when the point mutation was made that abolishes enzymatic activity of KDM7A. Mechanism investigations revealed that silencing of Kdm7a down-regulated the expression of the CCAAT/enhancer binding protein α (C/EBPα) and secreted frizzled-related protein 1 (Sfrp1). Chromatin immunoprecipitation (ChIP) assay revealed that KDM7A directly binds to the promoters of C/EBPα and Sfrp1 and removes the histone methylation marks H3K9me2 and H3K27me2. Furthermore, silencing of Kdm7a activated canonical Wnt signalling. Thereafter, activation of canonical Wnt signalling through silencing of Sfrp1 in ST2 attenuated the stimulation of adipogenic differentiation and inhibition of osteogenic differentiation by KDM7A. Our study suggests that KDM7A balances adipogenic and osteogenic differentiation from progenitor cells through epigenetic control of C/EBPα and canonical Wnt signalling and implicates that control of KDM7A action has an epigenetic perspective of curtailing metabolic disorders like osteoporosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。