H3K27me3-modulated Hofbauer cell BMP2 signalling enhancement compensates for shallow trophoblast invasion in preeclampsia

H3K27me3 调节的霍夫鲍尔细胞 BMP2 信号增强可补偿先兆子痫中的浅层滋养细胞侵袭

阅读:9
作者:Jianye Deng, Hong-Jin Zhao, Ying Zhong, Cuiping Hu, Jinlai Meng, Chunling Wang, Xiangxin Lan, Xiyao Wang, Zi-Jiang Chen, Junhao Yan, Wei Wang, Yan Li

Background

Preeclampsia (PE) is a common hypertensive pregnancy disorder associated with shallow trophoblast invasion. Although bone morphogenetic protein 2 (BMP2) has been shown to promote trophoblast invasion in vitro, its cellular origin and molecular regulation in placenta, as well as its potential role in PE, has yet to be established. Additionally, whether BMP2 and/or its downstream molecules could serve as potential diagnostic or therapeutic targets for PE has not been explored.

Methods

Placentas and sera from PE and healthy pregnant women were subjected to multi-omics analyses, immunoblots, qPCR, and ELISA assays. Immortalized trophoblast cells, primary cultures of human trophoblasts, and first-trimester villous explants were used for in vitro experiments. Adenovirus expressing sFlt-1 (Ad Flt1)-induced PE rat model was used for in vivo studies. Findings: We find globally decreased H3K27me3 modifications and increased BMP2 signalling in preeclamptic placentas, which is negatively correlated with clinical manifestations. BMP2 is derived from Hofbauer cells and epigenetically regulated by H3K27me3 modification. BMP2 promotes trophoblast invasion and vascular mimicry by upregulating BMP6 via BMPR1A-SMAD2/3-SMAD4 signalling. BMP2 supplementation alleviates high blood pressure and fetal growth restriction phenotypes in Ad Flt1-induced rat PE model. Interpretation: Our findings demonstrate that epigenetically regulated Hofbauer cell-derived BMP2 signalling enhancement in late gestation could serve as a compensatory response for shallow trophoblast invasion in PE, suggesting opportunities for diagnostic marker and therapeutic target applications in PE clinical management. Funding: National Key Research and Development Program of China (2022YFC2702400), National Natural Science Foundation of China (82101784, 82171648, 31988101), and Natural Science Foundation of Shandong Province (ZR2020QH051, ZR2020MH039).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。