Exosomes from LPS-Stimulated hDPSCs Activated the Angiogenic Potential of HUVECs In Vitro

LPS 刺激的 hDPSC 中的外泌体体外激活了 HUVEC 的血管生成潜能

阅读:7
作者:Xiangyu Huang, Wei Qiu, Yuhua Pan, Jianjia Li, Zhao Chen, Kaiying Zhang, Yifei Luo, Buling Wu, Wenan Xu

Background

Exosomes from human dental pulp stem cells (hDPSCs) were indicated to play a positive role in vascular regeneration processes. But the angiogenic capabilities of exosomes from inflammatory hDPSCs and the underlying mechanism remain unknown. In this study, the inflammatory factor lipopolysaccharide (LPS) was used to stimulate hDPSCs, and exosomes were extracted from these hDPSCs. The proangiogenic potential of exosomes was examined, and the underlying mechanism was studied. Method: Exosomes were isolated from hDPSCs with or without LPS stimulation (N-EXO and LPS-EXO) and cocultured with human umbilical vein endothelial cells (HUVECs). The proangiogenic potential of exosomes was evaluated by endothelial cell proliferation, migration, and tube formation abilities in vitro. To investigate the proangiogenic mechanism of LPS-EXO, microRNA sequencing was performed to explore the microRNA profile of N-EXO and LPS-EXO. Gene Ontology (GO) analysis was used to study the functions of the predicted target genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was used to estimate the signaling pathways associated with the inflammation-induced angiogenesis process. Result: Compared to the uptake of N-EXO, uptake of LPS-EXO activated the angiogenic potential of HUVECs by promoting the proliferation, migration, and tube formation abilities in vitro. The mRNA expression levels of vascular endothelial growth factor (VEGF) and kinase-insert domain-containing receptor (KDR) in the LPS-EXO group were significantly higher than those in the N-EXO group. MicroRNA sequencing showed that 10 microRNAs were significantly changed in LPS-EXO. Pathway analysis showed that the genes targeted by differentially expressed microRNAs were involved in multiple angiogenesis-related pathways.

Conclusion

This study revealed that exosomes derived from inflammatory hDPSCs possessed better proangiogenic potential in vitro. This is the first time to explore the role of exosomal microRNA from hDPSCs in inflammation-induced angiogenesis. This finding sheds new light on the effect of inflammation-stimulated hDPSCs on tissue regeneration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。