Interpeduncular GABAergic neuron function controls threat processing and innate defensive adaptive learning

脚间 GABA 能神经元功能控制威胁处理和先天防御性适应性学习

阅读:3
作者:Susanna Molas, Elora Williams, Leshia Snively, Benjamin O'Meara, Hannah Jacobs, Miranda Kolb, Rubing Zhao-Shea, Michael Baratta, Andrew Tapper

Abstract

The selection of appropriate defensive behaviors in the face of potential threat is fundamental to survival. However, after repeated exposures to threatening stimuli that did not signal real danger, an animal must learn to adjust and optimize defensive behaviors. Despite extensive research on innate threat processing, little is known how individuals change their defensive behaviors when presented with recurrent threat exposures without evidence of a real risk. Insight into this process is critical as its dysregulation may contribute to neuropsychiatric conditions, such as anxiety disorders. Here, we used the visual looming stimulus (VLS) paradigm in mice to investigate innate threat processing and adaptive defensive learning. Repeated exposure to VLS over consecutive sessions reduced immediate freezing responses and time spent inside a sheltered area upon VLS events, leading to an increase in foraging behaviors. Fiber photometry recordings and optogenetic manipulations revealed that VLS innate adaptive defensive learning is associated with reduced recruitment of the midbrain interpeduncular nucleus (IPN), a structure associated with fear and anxiety-related behaviors. Functional circuit-mapping identified a role for select IPN projections to the laterodorsal tegmental nucleus in gating defensive learning. Finally, we uncovered a subpopulation of IPN neurons that express the neuropeptide somatostatin and encode safety- and avoidance signals in response to VLS. These results identify critical behavioral signatures of innate defensive responses and a circuit that regulates the essential features of threat processing.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。