Dual regulatory role of CCNA2 in modulating CDK6 and MET-mediated cell-cycle pathway and EMT progression is blocked by miR-381-3p in bladder cancer

CCNA2 在调节 CDK6 和 MET 介导的细胞周期通路和 EMT 进展中的双重调节作用被膀胱癌中的 miR-381-3p 阻断

阅读:3
作者:Jiangfeng Li, Yufan Ying, Haiyun Xie, Ke Jin, Huaqing Yan, Song Wang, Mingjie Xu, Xin Xu, Xiao Wang, Kai Yang, Xiangyi Zheng, Liping Xie

Abstract

Emerging evidence has elucidated that microRNAs (miRNAs) transcribed from miRNA cluster at DLK-DIO3 imprinted domain are involved in various cancers. However, as one member of this cluster, the underlying mechanisms and functions of miR-381-3p in bladder cancer (BCa) still remains elusive. Here we demonstrate that the hypermethylated status of upstream maternally expressed gene 3 divergent methylation region reduces the expression of miR-381-3p in BCa by bisulfite-sequencing PCR. In vitro and in vivo experiments indicate that overexpression of miR-381-3p significantly inhibits cell proliferation via inducing G1 phase arrest and migration via down-regulating MET and CCNA2 induced EMT progression. CDK6/CCNA2/MET are all identified as the direct targets of miR-381-3p by bioinformatics analysis and dual-luciferase reporter assay. Furthermore, inhibition of CCNA2 mediated by miR-381-3p as the crucial biregulator not only participates in the proliferation regulation with CDK6 in cell cycle but also modulates the EMT progression via ROCK/AKT/β-catenin/SNAIL pathway, which establishes an EMT circuit combined with miR-381-3p/MET/AKT/GSK-3β/SNAIL pathway, and SNAIL is the last confocal target to induce EMT progression. To conclude, we propose 2 novel regulatory circuits mediated by miR-381-3p in BCa, which may assist in the development of more effective therapies against BCa in the future.-Li, J., Ying, Y., Xie, H., Jin, K., Yan, H., Wang, S., Xu, M., Xu, X., Wang, X., Yang, K., Zheng, X., Xie, L. Dual regulatory role of CCNA2 in modulating CDK6 and MET-mediated cell-cycle pathway and EMT progression is blocked by miR-381-3p in bladder cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。