Antimicrobial potential and osteoblastic cell growth on electrochemically modified titanium surfaces with nanotubes and selenium or silver incorporation

纳米管和硒或银掺入的电化学改性钛表面的抗菌潜力和成骨细胞生长

阅读:4
作者:Kevin Staats, Magdalena Pilz, Jie Sun, Tzvetanka Boiadjieva-Scherzer, Hermann Kronberger, Selma Tobudic, Reinhard Windhager, Johannes Holinka

Abstract

Titanium nanotube surfaces containing silver, zinc, and copper have shown antimicrobial effects without decreasing osteoblastic cell growth. In this in-vitro study we present first results on the biological evaluation of surface modifications by incorporating selenium and silver compounds into titanium-dioxide (TiO2) nanotubes by electrochemical deposition. TiO2-nanotubes (TNT) and Phosphate-doped TNT (pTNT) were grown on the surface of Ti6Al4V discs by anodization. Hydroxyapatite (HA), selenium (Se) and silver (Ag) compounds were incorporated by electrochemical deposition. Colony forming units of Staphylococcus epidermidis (DSM 3269) were significantly decreased in SepTNT (0.97 ± 0.18 × 106 CFU/mL), SepTNT-HA (1.2 ± 0.39 × 106 CFU/mL), AgpTNT (1.36 ± 0.42 × 106 CFU/mL) and Ag2SepTNT (0.999 ± 0.12 × 106 CFU/mL) compared to the non-modified control (2.2 ± 0.21 × 106 CFU/mL). Bacterial adhesion was calculated by measuring the covered area after fluorescence staining. Adhesion was lower in SepTNT (37.93 ± 12%; P = 0.004), pTNT (47.3 ± 6.3%, P = 0.04), AgpTNT (24.9 ± 1.8%; P < 0.001) and Ag2SepTNT (14.9 ± 4.9%; P < 0.001) compared to the non-modified control (73.7 ± 11%). Biofilm formation and the growth of osteoblastic cells (MG-63) was observed by using Crystal Violet staining. Biofilm formation was reduced in SepTNT (22 ± 3%, P = 0.02) and Ag2SepTNT discs (23 ± 11%, P = 0.02) compared to the non-modified control (54 ± 8%). In comparison with the non-modified control the modified SepTNT-HA and pTNT surfaces showed a significant higher covered area with osteoblastic MG-63-cells. Scanning electron microscope (SEM) images confirmed findings regarding bacterial and osteoblastic cell growth. These findings show a potential synergistic effect by combining selenium and silver with titanium nanotubes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。