Use of novel structural features to identify urinary biomarkers during acute kidney injury that predict progression to chronic kidney disease

利用新的结构特征来识别急性肾损伤期间预测慢性肾病进展的尿液生物标志物

阅读:6
作者:Jennifer R Charlton, Teng Li, Teresa Wu, Kimberly deRonde, Yanzhe Xu, Edwin J Baldelomar, Kevin M Bennett

Background

A significant barrier to biomarker development in the field of acute kidney injury (AKI) is the use of kidney function to identify candidates. Progress in imaging technology makes it possible to detect early structural changes prior to a decline in kidney function. Early identification of those who will advance to chronic kidney disease (CKD) would allow for the initiation of interventions to halt progression. The goal of this study was to use a structural phenotype defined by magnetic resonance imaging and histology to advance biomarker discovery during the transition from AKI to CKD.

Conclusions

We have used structural features to identify several candidate urinary proteins that predict whole kidney pathologic features during the transition from AKI to CKD, including IGFBP-3, TNFRII, and fractalkine. In future work, these biomarkers must be corroborated in patient cohorts to determine their suitability to predict CKD after AKI.

Methods

Urine was collected and analyzed from adult C57Bl/6 male mice at four days and 12 weeks after folic acid-induced AKI. Mice were euthanized 12 weeks after AKI and structural metrics were obtained from cationic ferritin-enhanced-MRI (CFE-MRI) and histologic assessment. The fraction of proximal tubules, number of atubular glomeruli (ATG), and area of scarring were measured histologically. The correlation between the urinary biomarkers at the AKI or CKD and CFE-MRI derived features was determined, alone or in combination with the histologic features, using principal components.

Results

Using principal components derived from structural features, twelve urinary proteins were identified at the time of AKI that predicted structural changes 12 weeks after injury. The raw and normalized urinary concentrations of IGFBP-3 and TNFRII strongly correlated to the structural findings from histology and CFE-MRI. Urinary fractalkine concentration at the time of CKD correlated with structural findings of CKD. Conclusions: We have used structural features to identify several candidate urinary proteins that predict whole kidney pathologic features during the transition from AKI to CKD, including IGFBP-3, TNFRII, and fractalkine. In future work, these biomarkers must be corroborated in patient cohorts to determine their suitability to predict CKD after AKI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。