Glucocorticoid-Induced Insulin Resistance in Men Is Associated With Suppressed Undercarboxylated Osteocalcin

男性糖皮质激素诱导的胰岛素抵抗与羧化不足的骨钙素受到抑制有关

阅读:9
作者:Lewan Parker, Xuzhu Lin, Andrew Garnham, Glenn McConell, Nigel K Stepto, David L Hare, Elizabeth Byrnes, Peter R Ebeling, Ego Seeman, Tara C Brennan-Speranza, Itamar Levinger

Abstract

In mice, glucocorticoid-induced insulin resistance occurs largely through impaired osteoblast function and decreased circulating undercarboxylated osteocalcin (ucOC). Whether these mechanisms contribute to glucocorticoid-induced insulin resistance in humans has yet to be established. In addition, the effects of glucocorticoids on the exercise-induced increase in circulating ucOC and insulin sensitivity are also unknown. We hypothesized that acute glucocorticoid treatment would lead to basal and postexercise insulin resistance in part through decreased circulating ucOC and ucOC-mediated skeletal muscle protein signaling. Nine healthy men completed two separate cycling sessions 12 hours after ingesting either glucocorticoid (20 mg prednisolone) or placebo (20 mg Avicel). The homeostatic model assessment was used to assess basal insulin sensitivity and a 2-hour euglycemic-hyperinsulinemic clamp was commenced 3 hours after exercise to assess postexercise insulin sensitivity. Serum ucOC and skeletal muscle protein signaling were measured. Single-dose glucocorticoid ingestion increased fasting glucose (27%, p < 0.01) and insulin (83%, p < 0.01), and decreased basal insulin sensitivity (-47%, p < 0.01). Glucocorticoids reduced insulin sensitivity after cycling exercise (-34%, p < 0.01), reduced muscle GPRC6A protein content (16%, p < 0.05), and attenuated protein phosphorylation of mTORSer2481 , AktSer374 , and AS160Thr642 (59%, 61%, and 50%, respectively; all ps < 0.05). Serum ucOC decreased (-24%, p < 0.01) which correlated with lower basal insulin sensitivity (r = 0.54, p = 0.02), lower insulin sensitivity after exercise (r = 0.72, p < 0.05), and attenuated muscle protein signaling (r = 0.48-0.71, p < 0.05). Glucocorticoid-induced basal and postexercise insulin resistance in humans is associated with the suppression of circulating ucOC and ucOC-linked protein signaling in skeletal muscle. Whether ucOC treatment can offset glucocorticoid-induced insulin resistance in human subjects requires further investigation. © 2018 American Society for Bone and Mineral Research.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。