FUT6 Suppresses the Proliferation, Migration, Invasion, and Epithelial-Mesenchymal Transition of Esophageal Carcinoma Cells via the Epidermal Growth Factor Receptor/Extracellular Signal-Regulated Kinase Signaling Pathway

FUT6 通过表皮生长因子受体 / 细胞外信号调节激酶信号通路抑制食管癌细胞的增殖、迁移、侵袭和上皮-间质转化

阅读:4
作者:Jianle Lao, Yanmin Pang, Hongming Chen, Xiqiang Tang, Rizhu Li, Danlei Tong, Ping Qiu, Qianli Tang

Abstract

Esophageal cancer (ESCA) is a high-incidence disease worldwide, of which the 5-year survival rate remains dismal since the cellular basis of ESCA remains largely unclear. Herein, we attempted to examine the manifestation of fucosyltransferase-6 (FUT6) in ESCA and the associated mechanisms. The GSE161533 dataset was used to analyze a crucial gene in ESCA. The expression of FUT6 was investigated in normal esophageal epithelial cells and ESCA cell lines. Following FUT6 knockdown or overexpression, cell proliferation, migration, invasion, and levels of epithelial–mesenchymal transition (EMT)-related and epidermal growth factor receptor (EGFR)/extracellular signal-regulated kinase (ERK) signaling pathway-related proteins were evaluated using CCK-8, Transwell, and Western blotting with antibodies against EGFR, p-EGFR, E-cadherin, Vimentin, N-cadherin, ERK1/2, and p-ERK1/2), respectively. EGF was administered to stimulate the EGFR/ERK signaling pathway, followed by the assessment of cellular activity. Database analysis revealed that FUT6 was downregulated in the ESCA cells. Our study indicated that FUT6 is suppressed in various ESCA cell lines. Moreover, cell proliferation, invasion, migration, and EMT-related protein levels were conspicuously enhanced or restrained by FUT6 disruption or overexpression. FUT6 overexpression suppressed the malignant activities of the cells when stimulated by EGF, including inhibition of cell growth, movement, invasion, and EMT advancement, as well the reduction the levels of EGFR/ERK pathway proteins. In conclusion, FUT6 can suppress the EGFR/ERK signaling pathway activated by EGF, leading to the potential attenuation of ESCA cell proliferation, invasion, migration, and EMT.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。